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Motivation 
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• Classification: predicting the class of 
a set of examples given their 
features. 
 

• Standard classification methods aim 
at minimizing the errors  
 

• Such a traditional framework 
assumes that all misclassification 
errors carry the same cost 

• This is not the case in many real-world applications: Credit card 
fraud detection, churn modeling, credit scoring, direct marketing. 
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predict the class of set of examples given their features 

  

 

Where each element of S   is composed by  

 

It is usually evaluated using a traditional misclassification measure such as 

Accuracy, F1Score, AUC, among others. 

 

However, these measures assumes that different misclassification errors 
carry the same cost 

 

Background - Binary classification 
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We define a cost measure based on the cost matrix [Elkan 2001] 

 

 

 

 

 

 

 

From which we calculate the cost of applying a classifier to a given set 

 

 

Background - Cost-sensitive evaluation 
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However, the total cost may not be easy to interpret. Therefore, we propose 
a savings measure as the cost vs. the cost of using no algorithm at all 

 

 

 

 

Where                    is the cost of predicting the costless class 

Background - Cost-sensitive evaluation 
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Research in example-dependent cost-sensitive classification has been 
narrow, mostly because of the lack of publicly available datasets [Aodha 
and Brostow 2013]. 

 

Standard approaches consist in re-weighting the training examples based 
on their costs: 

 

• Cost-proportionate rejection sampling [Zadrozny et al. 2003] 

 

• Cost-proportionate oversampling [Elkan 2001] 

 

 

Background - State-of-the-art methods 
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• Bayes minimum risk  
A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost Sensitive Credit Card Fraud Detection 
Using Bayes Minimum Risk,” in 2013 12th International Conference on Machine Learning and Applications. 
Miami, USA: IEEE, Dec. 2013, pp. 333–338. 

 

• Probability calibration for Bayes minimum risk (BMR) 
A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Improving Credit Card Fraud Detection with 
Calibrated Probabilities,” in Proceedings of the fourteenth SIAM International Conference on Data Mining, 
Philadelphia, USA, 2014, pp. 677 – 685. 

 

• Cost-sensitive logistic regression (CSLR) 
A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Logistic Regression for 
Credit Scoring,” in 2014 13th International Conference on Machine Learning and Applications. Detroit, USA: 
IEEE, 2014, pp. 263–269. 

 

• Cost-sensitive decision trees (CSDT) 
A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Decision Trees,” Expert 
Systems with Applications, in press, 2015. 

 

Previous contributions 
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The main idea behind the ensemble methodology is to combine several 
individual base classifiers in order to have a classifier that outperforms 
everyone of them 

 

 

 

 

 

 

 

 

 

 

 

                 “The Blind Men and the Elephant”, Godfrey Saxe’s 

 

Introduction - Ensemble learning 
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Model 1 
Model 2 

Model 3 
Model 4 

Model 5 
Model 6 

Some unknown distribution 



Typical ensemble is made by combining T different base classifiers. Each 
base classifiers is trained by applying algorithm M in a random subset 

 

 

Introduction - Ensemble learning 
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Random inducers 
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After the base classifiers are constructed they are typically combined using 
one of the following methods: 

• Majority voting 

 

 

 

• Proposed cost-sensitive weighted voting 

 

 

 

 

 

 

Proposed combination methods 
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• Proposed cost-sensitive stacking 

 

 

 

Using the cost-sensitive logistic regression [Correa et. al, 2014] model: 

 

 

 

 

 

 

Then the weights are estimated using 

 

Proposed combination methods 
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The subsampling can be done either by: Bagging, pasting, random forest or 
random patches 

 

Proposed algorithms 

Base classifiers 
 

For j in 1..T: 

1. Subsample from training set 

𝑆𝑗 ← Subsample(𝑆) 

2. Train a CSDT on 𝑺𝒋 

M𝑗 ← M(𝑆𝑗) 

3. Estimate the weight 

α𝑗 ← 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 M𝑗 𝑆𝑗
𝑜𝑜𝑏  

 

Combination 
 

Select combination method: 

1. Majority voting 

𝐻 ← 𝑓𝑚𝑣 𝑆, 𝑀  

2. CS-Weighted voting 

𝐻 ← 𝑓𝑚𝑣 𝑆, 𝑀, 𝛼  

3. CS-Stacking 

𝛽 ← 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽(𝑆, 𝑀, 𝛽)  
𝐻 ← 𝑓𝑠 𝑆, 𝑀, 𝛽  
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Cost matrix 
 
 
 
 
 
 

Database 
 
 
 
 
 
 
A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost Sensitive Credit Card Fraud Detection 
Using Bayes Minimum Risk,” in 2013 12th International Conference on Machine Learning and Applications. 
Miami, USA: IEEE, Dec. 2013, pp. 333–338. 

 

 

Credit card fraud detection 
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# Examples % Positives Cost (Euros) 

1,638,772 0.21% 860,448 



 
Cost matrix 
 
 
 
 
 
 

Database 
 
 
 
 
 
 
A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “A novel costsensitive 
framework for customer churn predictive modeling,” Decision Analytics, vol. under review, 2015. 

 

 

Churn modeling 
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# Examples % Positives Cost (Euros) 

9,410 4.83% 580,884 



 
Cost matrix 
 
 
 
 
 
 

Database 
 
 
 
 
 
 
A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Logistic Regression for 
Credit Scoring,” in 2014 13th International Conference on Machine Learning and Applications. Detroit, USA: 
IEEE, 2014, pp. 263–269. 

Credit scoring 
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# Examples % Positives Cost (Euros) 

Kaggle Credit 112,915 6.74% 83,740,181 

PAKDD09 Credit 38,969 19.88% 3,117,960 



 
Cost matrix 
 
 
 
 
 
 

Database 
 
 
 
 
 
 
A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Improving Credit Card Fraud Detection with 
Calibrated Probabilities,” in Proceedings of the fourteenth SIAM International Conference on Data Mining, 

Philadelphia, USA, 2014, pp. 677 – 685. 

 

Direct marketing 
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# Examples % Positives Cost (Euros) 

37,931 12.62% 59,507 



 

• Cost-sensitive classification 
Background, previous contributions 

• Cost-sensitive Ensembles 
Introduction, random inducers, combination methods, propose algorithms 

• Datasets 
Credit card fraud detection, churn modeling, credit scoring, direct marketing 

• Experiments 
Experimental setup, results 

• Conclusions 
Contributions 

Agenda 

21 



 

• Cost-insensitive (CI): 

• Decision trees (DT) 

• Logistic regression (LR) 

• Random forest (RF) 

• Under-sampling (u) 

• Cost-proportionate sampling (CPS): 

• Cost-proportionate rejection-sampling (r) 

• Cost-proportionate over-sampling (o)  

• Bayes minimum risk (BMR) 

• Cost-sensitive training (CST): 

• Cost-sensitive logistic regression (CSLR) 

• Cost-sensitive decision trees (CSDT) 

Experimental setup - Methods 
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• Ensemble cost-sensitive decision trees (ECSDT): 

 

Random inducers: 

• Bagging (CSB) 

• Pasting (CSP) 

• Random forest (CSRF) 

• Random patches (CSRP) 

 

Combination: 

• Majority voting (mv) 

• Cost-sensitive weighted voting (wv) 

• Cost-sensitive staking (s) 

Experimental setup - Methods 
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• Each experiment was carry out 50 times 

 

• For the parameters of the algorithms a grid search was made 

 

• Results are measured by savings 

 

• Then the Friedman ranking is calculated for each method 

Experimental setup 
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Results 
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Results of the Friedman rank of the savings (1=best, 28=worst) 

Family Algorithm Rank 

ECSDT CSRP-wv-t 2.6 

ECSDT CSRP-s-t 3.4 

ECSDT CSRP-mv-t 4 

ECSDT CSB-wv-t 5.6 

ECSDT CSP-wv-t 7.4 

ECSDT CSB-mv-t 8.2 

ECSDT CSRF-wv-t 9.4 

BMR RF-t-BMR 9.4 

ECSDT CSP-s-t 9.6 

ECSDT CSP-mv-t 10.2 

ECSDT CSB-s-t 10.2 

BMR LR-t-BMR 11.2 

CPS RF-r 11.6 

CST CSDT-t 12.6 

Family Algorithm Rank 

CST CSLR-t 14.4 

ECSDT CSRF-mv-t 15.2 

ECSDT CSRF-s-t 16 

CI RF-u 17.2 

CPS LR-r 19 

BMR DT-t-BMR 19 

CPS LR-o 21 

CPS DT-r 22.6 

CI LR-u 22.8 

CPS RF-o 22.8 

CI DT-u 24.4 

CPS DT-o 25 

CI DT-t 26 

CI RF-t 26.2 



 

Results 
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Results of the Friedman rank of the savings organized by family 



 

Results 
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         Percentage of the highest savings 

Database Algorithm Savings 

Fraud CSRP-wv-t 0.73 

Churn CSRP-s-t 0.17 

Credit1 CSRP-mv-t 0.52 

Credit2 LR-t-BMR 0.31 

Marketing LR-t-BMR 0.5 



Results within the ECSDT family 
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                                                By combination method By random inducer 



 

 

• New framework for ensembles of example dependent cost-sensitive 
decision trees 

 

• Using five databases, from four real-world applications: credit card fraud 
detection, churn modeling, credit scoring and direct marketing, we show 
that the proposed algorithm significantly outperforms the state-of-the-
art cost-insensitive and example-dependent cost-sensitive algorithms 

 

• Highlight the importance of using the real example-dependent financial 
costs associated with the real-world applications 

 

 

 

Conclusions 
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Costcla - Software 
 

 
CostCla is a Python module for cost-sensitive machine learning built on 
top of Scikit-Learn, SciPy and distributed under the 3-Clause BSD license. 

 

In particular, it provides: 

• A set of example-dependent cost-sensitive algorithms 

• Different real-world example-dependent cost-sensitive datasets. 

 

Installation 

pip install costcla 

 

Documentation:  https://pythonhosted.org/costcla/ 

Development: https://github.com/albahnsen/CostSensitiveClassification 
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Costcla - Software 
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Costcla - Software 
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Alejandro Correa Bahnsen 
 


