ST

securityandtrust.u

Ensembles of example-dependent cost-sensitive
decision trees

April 28, 2015

Alejandro Correa Bahnsen
with

Djamila Aouada, SnT
Bjérn Ottersten, SnT I"li l"
U VR RSITE Del

UXE R OUNG

Motivation §IH

securityandtrust.u

* C(lassification: predicting the class of ,

a set of examples given their ¢ © 8 o
features. 8) o
@ 00
OO ®
e Standard classification methods aim @0
at minimizing the errors o © o0
Q O
e Such a traditional framework 0O &
assumes that all misclassification P ° P
errors carry the same cost >

e This is not the case in many real-world applications: Credit card
fraud detection, churn modeling, credit scoring, direct marketing.

||||||||| £ DU 2

Agenda §|H

securityandtrust.lu

 Cost-sensitive classification

Background, previous contributions

e Cost-sensitive Ensembles

Introduction, random inducers, combination methods, propose algorithms

e Datasets

Credit card fraud detection, churn modeling, credit scoring, direct marketing

* Experiments
Experimental setup, results

 Conclusions
Contributions

UNIVERSITE DU 3
LUXEMBOURG

Background - Binary classification §IH

securityandtrust.u
predict the class of set of examples given their features
f:8—=40,1}

Where each element of S is composed by X; = [z}, 22, ..., 2¥]

il ey

It is usually evaluated using a traditional misclassification measure such as
Accuracy, F1Score, AUC, among others.

However, these measures assumes that different misclassification errors
carry the same cost

UNIVERSITE DU 4
LUXEMBOURG

Background - Cost-sensitive evaluation §IH

securityandtrust.lu

We define a cost measure based on the cost matrix [Elkan 2001]

Actual Positive

Actual Negative

y; =1 y; =0
Predicted Positive ,
. Crp, Crp,
C; = 1
Predicted Negative
e — 0 - CFrn, Crn,
.=

From which we calculate the cost of applying a classifier to a given set

N
Cost(f(S)) =Y wi(ci0rp, + (1 = c:)Crn,) + (1 = 4:)(c:Cpp, + (1 = ¢;)Cry,)

i=1

UNIVERSIT! £ DU

Background - Cost-sensitive evaluation §IH

securityandtrust.u

However, the total cost may not be easy to interpret. Therefore, we propose
a savings measure as the cost vs. the cost of using no algorithm at all

Savings(f(S)) = ot (@G;tizit(f(sn

Where Cost;(S) is the cost of predicting the costless class

C'ost)(S) = min{Cost(fo(S)), Cost(f1(S))}

||||||||| £ DU 6

Background - State-of-the-art methods §IH

securityandtrust.u

Research in example-dependent cost-sensitive classification has been
narrow, mostly because of the lack of publicly available datasets [Aodha
and Brostow 2013].

Standard approaches consist in re-weighting the training examples based
on their costs:

* Cost-proportionate rejection sampling [Zadrozny et al. 2003]

* Cost-proportionate oversampling [Elkan 2001]

||||||||| £ DU 7

Previous contributions §IH

securityandtrust.lu

* Bayes minimum risk

A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost Sensitive Credit Card Fraud Detection
Using Bayes Minimum Risk,” in 2013 12th International Conference on Machine Learning and Applications.
Miami, USA: IEEE, Dec. 2013, pp. 333—-338.

* Probability calibration for Bayes minimum risk (BMR)

A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Improving Credit Card Fraud Detection with
Calibrated Probabilities,” in Proceedings of the fourteenth SIAM International Conference on Data Mining,
Philadelphia, USA, 2014, pp. 677 — 685.

e Cost-sensitive logistic regression (CSLR)

A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Logistic Regression for
Credit Scoring,” in 2014 13th International Conference on Machine Learning and Applications. Detroit, USA:
IEEE, 2014, pp. 263-269.

* Cost-sensitive decision trees (CSDT)

A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Decision Trees,” Expert
Systems with Applications, in press, 2015.

UNIVERSITE DU 8
LUXEMBOURG

Agenda §|H

securityandtrust.lu

e Cost-sensitive Ensembles

Introduction, random inducers, combination methods, propose algorithms

e Datasets

Credit card fraud detection, churn modeling, credit scoring, direct marketing

* Experiments
Experimental setup, results

 Conclusions
Contributions

UNIVERSITE DU 9
LUXEMBOURG

Introduction - Ensemble learning w

securityandtrust.lu

The main idea behind the ensemble methodology is to combine several
individual base classifiers in order to have a classifier that outperforms

everyone of them
*ey. N \
W, .

- ,'“\ Some unknown distribution
e

I p
~7 | Model 3 ’.J Model 6

\
3)) Model A . §s:;,_\

-

“The Blind Men and the Elephant”, Godfrey Saxe’s

10

Introduction - Ensemble learning m

securityandtrust.u

Typical ensemble is made by combining T different base classifiers. Each
base classifiers is trained by applying algorithm M in a random subset

M, =M(S;) Vje{l.T}

Ao % 8 o
©oo0
>
Aq:o oogé o% Ao AOO % 8 .
o o
T w [S
o o © oe®
ﬁBQ @ o QW
o & ° o &
o ° o o o ° o
> > >
A
oo ©
©0o o0
® o
"
5 ° o
il S

IIIIIIIII £ DU 11

Random inducers §IH

securityandtrust.u

Training set

OINJO U IWIN -

&~ ——

Bagging Pasting Random forest Random patches

9

4
6
1

QW IR INJUTIN IO 0O

RINEIR IR o U

[N [N I NNy [N %Y [3;] S
=Y [¥] BN 1 [=N 0] [3,] [=
=Y (V] B Ny (SN 1) [3,] [

]

UNIVERSITE DU 12
LUXEMBOURG

Proposed combination methods §IH

securityandtrust.lu

After the base classifiers are constructed they are typically combined using
one of the following methods:

* Majority voting
T

H(S) = fmo(S. M)—arﬁcg%gf} 11 o(M;(S))

* Proposed cost-sensitive weighted voting

H wolS, — (M(
(8) = fuwu(S. M. a) = argcgg&i}zifv;

- 1 — e(M; (8;05)) - Savings(M;(S9°))
R | 0o - . __ oo
Sy L= e(M;, (S90)) » T T | Savings(M;, (S9°0))

Sy =8 -8,

Proposed combination methods §IH

securityandtrust.lu

* Proposed cost-sensitive stacking

H(S) = f(8. M. §) = !

1+ e~ (X721 BiM;(S))

Using the cost-sensitive logistic regression [Correa et. al, 2014] model:

N

J(S. M.,) :Z {yz (fs(Xz',Mﬁﬁ) -(Crp, — CpN,) + (FN)

i=1

|
(1— yz‘)(fs(XnM,.B) (Crpp, — CrN,) + Cry,)]

Then the weights are estimated using

J—argglg]lf{}%nJ(S M., 3)

Proposed algorithms

/ Base classifiers \

Forjinl..T:

1. Subsample from training set
S; « Subsample(S)

2.Train a CSDT on §;

3. Estimate the weight

\a,- savings (M; (5,°°")) /

ST

securityandtrust.lu

/ Combination \

Select combination method:

1. Majority voting
H < fny(S,M)
2. CS-Weighted voting
H < fin,(S, M, a)
3. CS-Stacking
p < argmin J(S,M,)

H < (S, M, B)

The subsampling can be done either by: Bagging, pasting, random forest or
random patches

15

Agenda §|ﬂ

securityandtrust.u

e Datasets

Credit card fraud detection, churn modeling, credit scoring, direct marketing

* Experiments
Experimental setup, results

 Conclusions
Contributions

UNIVERSITE DU 16
LUXEMBOURG

Credit card fraud detection

Cost matrix

Actual Positive

Actual Negative

Y; =]_ Yi = []
Predicted Positive C. C,
c; =1
Predu:’f:eld_l‘gegatwe Amt; 0

Database

Examples Cost (Euros)

1,638,772

0.21%

860,448

ST

securityandtrust.u

A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost Sensitive Credit Card Fraud Detection
Using Bayes Minimum Risk,” in 2013 12th International Conference on Machine Learning and Applications.

Miami, USA: IEEE, Dec. 2013, pp. 333—-338.

17

Churn modeling §IH

securityandtrust.lu

Cost matrix

Actual Positive Actual Negative
yi = 1 yi =0
Predicted Pos Crp, =v:C,,+ B
¢ =1 (1= 7)) (CLV; + Cy) | ©F P = Co: T Ca

PIETFE%N% Crn, =CLV; Crn, =0

Database

Examples Cost (Euros)

9,410 4.83% 580,884

A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “A novel costsensitive
framework for customer churn predictive modeling,” Decision Analytics, vol. under review, 2015.

18

Credit scoring §IH

securityandtrust.lu

Cost matrix

Actual Positive | Actual Negative
yi =1 y; =0
Predl-:::a:l_ Piosﬂ:lve 0 e+ O
Predicted Negative Cl; - Ly, 0
c; =0
Database

| #Examples Cost (Euros)
Kaggle Credit 112,915 6.74% 83,740,181
PAKDDOQ9 Credit 38,969 19.88% 3,117,960

A. Correa Bahnsen, D. Aouada, and B. Ottersten, “Example-Dependent Cost-Sensitive Logistic Regression for
Credit Scoring,” in 2014 13th International Conference on Machine Learning and Applications. Detroit, USA:
IEEE, 2014, pp. 263-269. 19

Direct marketing

Cost matrix

Actual Positive

ST

securityandtrust.u

Actual Negative

y; = 1 yi =0
Predicted Positive c. C,
C; = 1
Predlczedzd:}f]egatlve Int; 0

Database

Examples Cost (Euros)

37,931

12.62%

59,507

A. Correa Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Improving Credit Card Fraud Detection with
Calibrated Probabilities,” in Proceedings of the fourteenth SIAM International Conference on Data Mining,

Philadelphia, USA, 2014, pp. 677 — 685.

Agenda §|H

securityandtrust.u

* Experiments
Experimental setup, results

 Conclusions
Contributions

UNIVERSITE DU 21
LUXEMBOURG

Experimental setup - Methods §IH

securityandtrust.lu

Cost-insensitive (Cl):
e Decision trees (DT)
e Logistic regression (LR)
« Random forest (RF)
* Under-sampling (u)
Cost-proportionate sampling (CPS):
e Cost-proportionate rejection-sampling (r)
* Cost-proportionate over-sampling (o)
Bayes minimum risk (BMR)
Cost-sensitive training (CST):
* Cost-sensitive logistic regression (CSLR)
* Cost-sensitive decision trees (CSDT)

||||||||| £ DU 22

Experimental setup - Methods §IH

securityandtrust.u

 Ensemble cost-sensitive decision trees (ECSDT):

Random inducers:

* Bagging (CSB)

e Pasting (CSP)
 Random forest (CSRF)

e Random patches (CSRP)

Combination:

* Majority voting (mv)

* Cost-sensitive weighted voting (wv)
* Cost-sensitive staking (s)

||||||||| £ DU 23

Experimental setup §IH

securityandtrust.u

e Each experiment was carry out 50 times
* For the parameters of the algorithms a grid search was made
e Results are measured by savings

* Then the Friedman ranking is calculated for each method

||||||||| £ DU 24

Results m

securityandtrust.lu

Results of the Friedman rank of the savings (1=best, 28=worst)

Family| Algorithm | _Rank _ Family| Algorithm | _Rank _

ECSDT CSRP-wv-t 2.6 CST CSLR-t 14.4
ECSDT CSRP-s-t 3.4 ECSDT CSRF-mv-t 15.2
ECSDT CSRP-mv-t 4 ECSDT CSRF-s-t 16
ECSDT CSB-wv-t 5.6 Cl RF-u 17.2
ECSDT CSP-wv-t 7.4 CPS LR-r 19
ECSDT CSB-mv-t 8.2 BMR DT-t-BMR 19
ECSDT CSRF-wv-t 9.4 CPS LR-0 21
BMR RF-t-BMR 9.4 CPS DT-r 22.6
ECSDT CSP-s-t 9.6 Cl LR-u 22.8
ECSDT CSP-mv-t 10.2 CPS RF-o 22.8
ECSDT CSB-s-t 10.2 Cl DT-u 24.4
BMR LR-t-BMR 11.2 CPS DT-o 25
CPS RF-r 11.6 Cl DT-t 26
— CST CSDT-t 12.6 Cl RF-t 26.2
J ||||i.|||1
oot 25

Results §IH

securityandtrust.lu

Results of the Friedman rank of the savings organized by family

30 -

25 -

Friedman Ranking
- M
wn o

—
L]

Cl CSS BMR CST ECSDT

UNIVERSITE DU 26
LUXEMBOURG

Results §IH

securityandtrust.lu

Percentage of the highest savings

T
Fraud CSRP-wv-t E 90 -
Churn CSRP-s-t 0.17 § 80 |
o 70 -
Creditl CSRP-mv-t 0.52 =
S 60
: O
Credit2 LR-t-BMR 0.31 S 5
Marketing LR-t-BMR 0.5 40 . |
Fraud Churn Credit1 Credit2 Marketing
== LR-t-BMR == CSDT-t
== RF-t-BMR == CSRP-wv-t
.l
UNIVERSITE DU 27

LUXEMBOURG

Results within the ECSDT family §IH

securityandtrust.lu

By random inducer By combination method
16 - . 16 - _
14 : 14 .)
£ £
E E
: N ? . : N .
: 5
E 8 . £ 8 _
e e
2 2
L 6 -) I 6 . _
2 - : 2 .
Bagging Pasting R. Forest R. Patches Majority Voting Weighted Voting Staking

UNIVERSITE DU 28

LUXEMBOURG

Conclusions m

securityandtrust.lu

* New framework for ensembles of example dependent cost-sensitive
decision trees

e Using five databases, from four real-world applications: credit card fraud
detection, churn modeling, credit scoring and direct marketing, we show
that the proposed algorithm significantly outperforms the state-of-the-
art cost-insensitive and example-dependent cost-sensitive algorithms

* Highlight the importance of using the real example-dependent financial
costs associated with the real-world applications

UNIVERSITE DU 29
LUXEMBOURG

Costcla - Software

CostCla is a Python module for cost-sensitive machine learning built on
top of Scikit-Learn, SciPy and distributed under the 3-Clause BSD license.

In particular, it provides:
* A set of example-dependent cost-sensitive algorithms
e Different real-world example-dependent cost-sensitive datasets.

Installation
pip install costcla

Documentation: https://pythonhosted.org/costcla/
Development: https://github.com/albahnsen/CostSensitiveClassification

#1

UNIVERSIT! E DU
UUUUUUUUUU

30

https://pythonhosted.org/costcla/
https://pythonhosted.org/costcla/
https://pythonhosted.org/costcla/
https://pythonhosted.org/costcla/
https://pythonhosted.org/costcla/
https://pythonhosted.org/costcla/
https://github.com/albahnsen/CostSensitiveClassification
https://github.com/albahnsen/CostSensitiveClassification
https://github.com/albahnsen/CostSensitiveClassification
https://github.com/albahnsen/CostSensitiveClassification
https://github.com/albahnsen/CostSensitiveClassification
https://github.com/albahnsen/CostSensitiveClassification

Costcla - Software

Prepare dataset and load libraries

In [38]: from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test split
from costcla.metrics import savings score
from costcla.datasets import load creditscoring2
from costcla.sampling import cost_sampling
from costcla import models
data = load_creditscoring2()

X _train, X test, y train, y test,
cost mat train, cost mat test =\

train_test split(data.data, data.target, data.cost_mat)

Random forest

In [19]: f RF = RandomForestClassifier()
y pred = f RF.fit{X_train, y _train).predict(X test)
print savings score(y test, y pred, cost mat test)
0.042197359989
cost-proportionate rejection sampling

In [26]: X cps_r, y cps_r, cost mat_cps_r = \

cost _sampling(X train, y train, cost mat train,
method="'RejectionSampling')

y pred = f RF.fit(X cps r, y cps r).predict(X test)

print savings score(y test, y pred, cost mat test)

0.280743761779

UNIVERSITE DU
LUXEMBOURG

In [30]:

In [2]:

In [33]:

ST

securityandtrust.lu

Bayes minimum risk

f RF.fit(X train, y train)

y prob test = f RF.predict proba(X test)

f BMR = models.BayesMinimumRiskClassifier()

f BMR.fit(y test, y prob test)

y pred = f BMR.predict(y prob test, cost mat test)
print savings score(y test, y pred, cost mat test)

B.285102564249

cost-sensitive decision tree

f CSDT = models.CSDecisionTreeClassifier()

f CSDT.fit(data.data, data.target, data.cost mat)

y pred = f CSDT.predict(data.data)

print savings score(data.target, y pred, data.cost mat)

B.289489571352

cost-sensitive random patches

f CSRP = costcla.models.CSRandomPatchesClassifier()

f CSRP.fit(data.data, data.target, data.cost mat)

y pred = f CSRP.predict(data.data)

print savings score(data.target, y pred, data.cost mat)

0.306607400467

31

Costcla - Software §M

securityandtrust.lu

< Q https://pythonhosted.org/costcla/costcla.models.CostSensitiveLogisticRegression.html

costcla

Docs » costcla.models » costcla.models.CostSensitivelLogisticRegression View page source

costcla.models.CostSensitiveLogisticRegression

costcla.models class costcla.models.CostSensitivelLogisticRegression(C=1.0, fit intercept=True,
’ max_iter=100, random_state=None, solver="ga’, tol=0.0001, verbose=0)
costcla.models.BayesMinimumRiskClassifi . e . .
A example-dependent cost-sensitive Logistic Regression classifier.
costcla.models. ThresholdingOptimization

costcla.models.CostSensitiveLogisticRegr Samme=re S

Inverse of regularization strength; must be a positive float. Like in support
vector machines, smaller values specify stronger regularization.

fit_intercept : bool, default: True

Specifies if a constant (a.k.a. bias or intercept) should be added the decision
function.

max_iter:int

Useful only for the ga and bfgs solvers. Maximum number of iterations
taken for the solvers to converge.

random_state : int seed, RandomState instance, or None (default)

The seed of the pseudo random number generator to use when shuffling the
data.

solver :{'ga’, 'bfgs’l

Algorithm to use in the optimization problem.

UNIVERSITE DU 32
= LUXEMBOURG

ST

securityandtrust.u

Thank You!!

L
s TR Ol
LU= OuNG

Alejandro Correa Bahnsen

